skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "An Xu, Zhouyuan Huo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Although the distributed machine learning methods can speed up the training of large deep neural networks, the communication cost has become the non-negligible bottleneck to constrain the performance. To address this challenge, the gradient compression based communication-efficient distributed learning methods were designed to reduce the communication cost, and more recently the local error feedback was incorporated to compensate for the corresponding performance loss. However, in this paper, we will show that a new "gradient mismatch" problem is raised by the local error feedback in centralized distributed training and can lead to degraded performance compared with full-precision training. To solve this critical problem, we propose two novel techniques, 1) step ahead and 2) error averaging, with rigorous theoretical analysis. Both our theoretical and empirical results show that our new methods can handle the "gradient mismatch" problem. The experimental results show that we can even train faster with common gradient compression schemes than both the full-precision training and local error feedback regarding the training epochs and without performance loss. 
    more » « less